SIMULATION: A TOOL FOR INTERDEPENDENT CRITICAL COMPLEX SYSTEMS ANALYSIS

Emiliano Casalicchio Università di Roma "Tor Vergata"

4th Colloquia, AllC 24.03.09 www.EmilianoCasalicchio.eu

Agenda

- Preamble
- Why simulation
- How to use simulation in Critical Infrastructure Analysis
- Simulation approaches & projects
- What we can do for simulation (Challenges)

Preamble

□ "To model a system is to replace it by something wich is

- (a) Simplier and/or easier to study and
- □ (b) Equivalent to the original in all the important respects".

Simulation techniques for discrete event systems, I.Mitrani, Cambridge university press

 Simulation is a techniques that use computers "to imitate, or simulate, the operations of varius kinds of real-world facilities or processes. The facility or process of interest is usually called a system...."

> Simulation modeling and analysis, A.M.Law and W.D.Kelton, McGraw Hill Int.

Why simulation

- Mathematical models typically made assumptions that are far from reality
- Simulation models allows to reproduce the reality at different level of fidelity
- □ **but**....

We need both: from HiFi Simulation to Abstract mathematical models

- High fidelity models of individual infrastructures
 - to understand changing in conditions or behaviour
- System models of aggregate infrastructures supply and dynamics
 - to indentify important interaction and feedbacks and
 - their effect on system operation
- □ Generic high abstracted complex networks models
 - to identify vulnerabilities of different networks (physical, social, logical) topologies to disruption and effective mitigations

How to use simulation in Critical Infrastructures analysis

- Predictive ("what if") and prescriptive ("goal-driven") analyses
- Discovery based analyses
- Probabilistic analyses
- User behaviour evaluation (and behaviour impact on infrastructure usage)

Predictive and prescriptive analyses

- Evaluation of Cascading impacts
- Node State evolution (analysis of events pattern)
- Mission assurance evaluation
 - How does the events effect mission capabilities
- Examples
 - Analysis of crude Oil Supply Disruption, analysis of the effects of tightening of the international crude oil market and loss of import capacity.
 - analysis of timing, magnitude, distribution and duration of potential economic impacts and propagating effects for identified disruption scenarios.
 - Analysis of reaction and recovery capacity to Hurricanes, Flooding, earthquake, etc...

Discovery based analyses

- Evaluation of interdependencies as causes (events) effects (outcomes)
- Example
 - Weighted ranking of critical subnetworks
 - Analysis of Influenza: vaccination rates, vaccine effectiveness, strain virulence, effects on public health and other infrastructures

Economic policy-related analysis:

- Which industries and economic regions are affected most by an infrastructure disruption?
- □ How do infrastructure constraints or industry constraints prolong economic recovery?
- Are small firms hurt more than large firms? Which are most influential on economic stability?
- What are the most effective loss prevention and mitigation strategies for individual firms?

Probabilistic analyses

- Evaluation of optimal infrastructure assets to protect from attack or restore in a disaster situation
- □ Risk analysis
- Effect of alternatives in transport routes or modes
- Example
 - Analysis and optimization models of:
 - Railroad Network
 - Air Transport
 - Other transportation networks

User behaviour evaluation

- Modeling and analysis based on fuzzy human behaviour models and cencus data
 - E.g. to evaluate behaviour impact on infrastructure usage both in normal and critical situations

Modeling and Simulation of Critical Complex Systems: **Existing Solutions**

- □ CRESCO @ ENEA, CRIAI, ... (IT)
- CISIA @ Campus Biomedico (IT)
- Federated ABMS @ University of Rome "Tor Vergata"
- DIESIS @ ENEA, IC, TNO, Fraunhofer,... (EU)
- SimCIP (IRRIIS) @ ENEA, Fraunhofer, VTT, TelecomParis, Siemense, Telecom, IABG, ETH, City,... (EU)

NISAC @ Sandia National Laboratories
 ActivitySim @ Los Alamos National Laboratories (USA)
 DIISA, N-ABLE, RNAS and ATOM, N-SMART, IEISS, WISE, UIS
 CIMS @ Idaho National Laboratory (USA)
 Integrated Modeling Environment @ UNC Charlotte

Symphony @ Argonne National Laboratory, Uchicago

Comparison: Technologies/Goals/ limitations

Project	Technology	Goals	Limitations		
CIMS® Agent-based, graph based, Federated Simulation. GA/DSS		 High portable and visual tools for displaying interdependencies weaknesses and vulnerabilities High level modeling and simulation for on-the-fly model building and timely 70% solutions mission assurance; Mission assurance includes the analysis of risk and impact that events place upon such capabilities 	N.A.		
ActivitySim	Agent-based, parallel simulation	Daily activities modeling and simulation to understand infrastructure networks demand profile	Model Re- engineering		
IME	SOA based, ontology based, Federated simulation	Integrated multi-model analysis	Deterministic models		
CISIA	population of nonlinear mutually dependent systems	High level modeling and simulation (macro-components)	Flexibility		
CRESCO	CISIA/Federated ABMS Federated simulation	 Integrated environment for interdependencies analysis High level and detailed simulation models 	Flexibility		
DIESIS	Ontology based/Federated Simulation	EISAC	N.A.		
Federated ABMS	Agent-based/HLA based federated simulation	Probabilistic Interdependencies analysis	Flexibility		
SimCIP	Federated Simulation/ propetary middleware	 Integrated environment for interdependencies analysis High level and detailed simulation models 	N.A.		
Simphony	Repast (Agent-based)	Easy-to-use point-and-click environment for model building Easy-data analysis	Model re- engineering		

Comparison: Technologies/Goals/ limitations

Project	Technology	Goals	Limitations
CIMS®	Agent-based, graph based, Federated Simulation. GA/DSS	 High portable and visual tools for displaying interdependencies weaknesses and vulnerabilities High level modeling and simulation for onthe-fly model building and timely 70% solutions mission assurance; Mission assurance includes the analysis of risk and impact that events place upon such capabilities 	N.A.
Simphony	Repast (Agent- based)	 Easy-to-use point-and-click environment for model building Easy-data analysis 	Model re- engineering
CISIA	population of nonlinear mutually dependent systems	High level modeling and simulation (macro- components)	Flexibility

Comparison: Technologies/Goals/ limitations

Project	Technology	Goals	Limitations
IME	SOA based, ontology based, Federated simulation	Integrated multi-model analysis	Deterministic models
CRESCO SPIII.5	Orizontal/vertical model integration	Integrated environment for interdependencies analysis	Flexibility
Federated ABMS	Agent-based/HLA based federated simulation	-HiFi model integration for frobabilistic Interdependencies analysis	Flexibility
SimCIP	Federated Simulation/ propetary middleware	 Integrated environment for interdependencies analysis High level and detailed simulation models 	N.A.
DIESIS	Ontology based Federated Simulation / intelligent communication middleware	EISAC	N.A.

NISAC capabilities

- Dynamic Infrastructure Interdependencies Simulation & Analysis (DIISA)
- NISAC Agent-Based Laboratory for Economics (N-ABLE)
- Chemical Sector Analysis Capability
- Network Optimization Models (RNAS and ATOM)
- Advanced Modeling & Techniques Investigation (AMTI)
- Network Simulation Modeling Analysis Research Tools (N-SMART)
- Interdependent Energy Infrastructure Simulation System (IEISS)
- Water Infrastructure Simulation Environment (WISE)
- Urban Infrastructure Suite (UIS)
 - urban transportation, telecommunications, public health, energy (IEISS), financial (commodity markets), and water-distribution (WISE) infrastructures and their interdependencies.

What We can do for simulation (challenges)

□ To study new methodology, techniques and tools for

- data representation and analysis
- knowledge/emergent behaviour discovery
- simulation interoperability
 - Ontologies
 - Sensible data representation and exchange
- integration of simulation models with DSS and optimization tools
- output analysis
- Economic models/policies to incentive stakeholders to share data

Conclusions

- Modeling and Simulation can do more for CIP iff
 - Private/public sectors contribute providing data
 - Academia and R&D contribute to enanche M&S
 - Institution and Private sector help to develop expertice rather then to buy products

www.EmilianoCasalicchio.eu

ThankYou

Emiliano.Casalicchio@UniRoma2.it

Slides available @ http://panzieri.dia.uniroma3.it/Colloquia/Colloquia24Marzo09.php