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Università degli Studi di Milano, Via Comelico 39, 20135 Milano, Italy, Tel: +39 2 55006-
275, Fax: +39 6 55006-205, E-mail: deluca@hermes.mc.dsi.unimi.it. Author to whom all
correspondence should be addressed (at the first address).

‡ Dipartimento di Informatica e Sistemistica, Università degli Studi di Roma “La Sapienza”,
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Abstract

Mimicking the case of rigid robot arms, the set-point regulation problem for manipulators
with flexible links moving under gravity can be solved by either model-based compensation
or PID control. The former cannot be applied if an unknown payload is present or when
model parameters are poorly estimated, while the latter requires fine and lengthy tuning of
gains in order to achieve good performance on the whole workspace. Moreover, no global
convergence proof has been yet given for PID control of flexible robot arms. In this paper,
a simple iterative scheme is proposed for generating exact gravity compensation at the
desired set point, without the knowledge of rigid or flexible dynamic model terms. The
control law starts with a PD action on the error at the joint level, updating at discrete
instants an additional feedforward term. Global convergence of the scheme is proved under
a mild condition on the proportional gain and a structural property on the arm stiffness,
which is usually satisfied in practice. The proposed learning scheme is also extended to
the direct control of the end-effector (tip) position. Experimental results are presented for
a two-link robot with a flexible forearm moving on a tilted plane.
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1. INTRODUCTION

Regulation of multi-link flexible manipulators is often performed using linear feedback laws

that exploit inherent physical properties of the system. In absence of gravity, it can be

shown that a simple proportional derivative (PD) feedback of the joint position error is

sufficient to asymptotically stabilize any arm configuration (De Luca and Siciliano, 1992a).

This strategy is a straightforward generalization of the known result for rigid robot arms

(Takegaki and Arimoto, 1981). In addition, a proper feedback from the deflection variables

may improve the transient characteristics (Lee et al., 1988).

For rigid manipulators under gravity, the most direct approach to set-point regulation is

to globally cancel the gravity terms and still apply PD control with positive definite gains

(Takegaki and Arimoto, 1981). Under a mild condition on the proportional gain, this

nonlinear control law has been simplified to constant gravity compensation, evaluated only

at the desired configuration (Tomei, 1991a); a purely linear feedback law with a feedforward

action is then obtained. In this case, the proportional gain should dominate the gradient

of the gravity forces in the whole robot workspace.

When flexible components are present in the robotic structure, a similar strategy based

on PD plus feedforward terms has been shown to asymptotically stabilize also robots with

elastic joints (Tomei, 1991b) and with flexible links (De Luca and Siciliano, 1992b). For

the elastic joint case, feedback is closed around the motor variables while for the flexible

link case only the joint (rigid) variables are used for control. This compensation of gravity

terms works under a further structural assumption on the joint or on the arm stiffness,

respectively.

In all cases, an exact knowledge of the gravity vector is required. This condition is difficult

to be realized, e.g. for a robot picking up multiple unknown payloads, and would need

anyway an identification procedure of the robot link parameters. As a result of inexact

compensation, a steady-state error will be present with this type of control even for a

simple point-to-point task. For an arm with flexible links, the nature of this error is

two-fold: first, a displacement is present at the joint level (as in the rigid case); second,

when considering the arm tip position, a further displacement is introduced by the arm

deflection. High-gain feedback reduces but does not eliminate these errors, exciting on the

other hand unmodeled dynamic effects (viz. higher order deformation modes) and leading

to longer transition times because of the low damped oscillations.

To compensate for gravity effects, another standard remedy that does not require knowl-

edge of the model is the addition of an integral term to the linear control law; however,

several problems arise with the design of a PID, partly due to the nonlinear nature of the
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robot. Typically, saturation will occurr during large transient phases and reset or anti-

windup procedures have to be devised when starting far from the final position (Åström

and Wittenmark, 1990). From a theoretical point of view, asymptotic stability of robot

PID control has been proved only for rigid arms. Moreover, it holds locally around the

desired configuration and requires complex inequalities among the proportional, derivative,

and integral gains to be satisfied (Arimoto et al., 1984a; Khorrami and Özgüner, 1988). In

practice, some of these drawbacks may be overcome by adding the integral action only near

the final point, so that gross motion is performed with PD control, while fine positioning

is achieved with PID. However, no formal proof of convergence has been given for this

method.

In this paper, we consider the set-point regulation problem for flexible manipulators under

gravity and propose a fast iterative scheme that builds up the required compensation at

the final configuration, with a very limited knowledge about the robot gravity terms. A

PD-based control law is applied iteratively at the joint level and the constant gravity

feedforward is learned without an explicit introduction of the integral error term nor the

use of high-gain feedback.

An easy to check sufficient condition is given for the convergence of the scheme to zero

steady-state error, taking into account in the analysis robot nonlinearities as well as arm

deflections. In analogy with (De Luca and et al., 1990), the arm stiffness should dominate

the gravity effects, an assumption which is usually satisfied in real flexible arms.

Experimental results are reported for a two-link lightweight manipulator, with a flexible

forearm, available at the Robotics Laboratory of our Department (De Luca et al., 1990).

The arm has been tilted from the horizontal plane so to include gravity effects. We mention

that a similar iterative learning scheme was already shown to be convergent in the case of

multi-link rigid robots and tested by simulation in (De Luca and Panzieri, 1992c).

Finally, the proposed learning scheme is extended to the direct control of the end-effector

position, thus compensating also for the tip displacement introduced by the arm flexibility.

An additional mild condition guarantees the convergence of a two-level scheme.

2. PRELIMINARIES

For a robot arm composed of a serial chain of links, some of which are flexible, the La-

grangian technique can be used to derive the dynamic equations of motion (Book, 1984),

modeling the slender links as Euler-Bernoulli beams with proper boundary conditions. A

linear model is in general sufficient to capture the dynamics of each flexible link, but the

interplay of rigid body motion and flexible deflections in the multi-link case gives rise to a
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full nonlinear dynamic model.

A set of basis space functions is used for describing link deformation shapes, with associated

generalized coordinates. Denoting by θ the n-vector of joint coordinates and by δ the m-

vector of link deformation coordinates, the (n+m)-vector q = (θ, δ) characterizes the arm

configuration.

We suppose to include only bending deformations limited, for each link, to the plane of

rigid motion. The closed-form dynamic equations of the arm can be written as n + m

second-order nonlinear differential equations in the general form

B(q)q̈ + h(q, q̇) + g(q) +

[
0

Kδ + Dδ̇

]
=

[
u

0

]
. (1)

In (1), the (n+m)×(n+m) positive definite symmetric inertia matrix B depends in general

on both joint (rigid) and link (flexible) coordinates, while the (n + m)-vector h contains

Coriolis and centrifugal forces, and the positive definite (diagonal) matrix D describes

modal damping of the links. Note that deformations are described in frames which are

clamped at the joint actuator sides, implying that the control does not enter directly in

the equations of motion of the flexible part (De Luca and Siciliano, 1991).

The two positional terms in (1) come from the gravitational potential energy Ug and from

the elastic one Uδ. In view of the small deformation hypothesis, we have in terms of energy

that

Uδ =
1

2
δTKδ ≤ Uδ,max <∞, (2)

where K is the positive definite symmetric (diagonal) stiffness matrix associated with link

elasticity. A direct consequence of (2) is a bound on the deformation vector

‖δ‖ ≤
√

2Uδ,max
λmax(K)

, (3)

in terms of the maximum eigenvalue of K. On the other hand, the (n + m)-vector of

gravity forces g = (∂Ug/∂q)
T can be partitioned as

g(q) =

(
gθ(θ, δ)
gδ(θ)

)
, (4)

where the dependence of the lower term is justified by the assumed small deformations.

Further, the vector g satisfies the inequality∥∥∥∥∂g∂q
∥∥∥∥ ≤ α0 + α1‖δ‖ ≤ α0 + α1

√
2Uδ,max
λmax(K)

=: α, (5)
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where α0, α1, α > 0. Similarly, for the components of (∂g/∂q) we have∥∥∥∥∂gθ∂q

∥∥∥∥ ≤ αθ,

∥∥∥∥∂gδ∂θ

∥∥∥∥ ≤ αδ, (6)

with αθ, αδ > 0. These bounds can be easily proven by observing that the gravity terms

contain only trigonometric functions of θ and linear/trigonometric functions of δ. As a

direct consequence of (5) or (6), we have e.g.

‖g(q1)− g(q2)‖ ≤ α‖q1 − q2‖, ∀q1, q2 ∈ IRn+m. (7)

We remark that the above arguments and what follows can be easily modified to include

also an explicit dependence of gδ in (4) from δ.

When the input torque u is chosen as a PD control on the joint error

u = KP (θd − θ)−KD θ̇, KP > 0, KD > 0, (8)

for a desired constant joint position θd, then the robot arm will be driven to a steady-state

condition q = q̄ = (θ̄, δ̄), q̇ = 0, which from (1) satisfies the following equations

gθ(θ̄, δ̄) = KP (θd − θ̄) (9)

gδ(θ̄) = −Kδ̄, (10)

implicitly defining the residual joint error θd − θ̄ and the arm deformation δ̄.

Consider instead the joint PD+ control law, i.e.

u = KP (θd − θ)−KD θ̇ + gθ(θd, δd) (11)

with KP > 0 and KD > 0, being the associated δd defined by

δd = −K−1gδ(θd). (12)

It has been shown in (De Luca and Siciliano, 1992b) that, under the assumption

λmin

(
KP O
O K

)
> α, (13)

q = qd = (θd, δd), q̇ = 0 is the unique equilibrium state of the closed-loop system, i.e.

satisfying

gθ(θ, δ) = KP (θd − θ) + gθ(θd, δd), (14)

gδ(θ) = −Kδ. (15)
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Condition (13) can always be satisfied, provided that an assumption on the structural link

flexibility holds:

λmin(K) = min
i=1,...,n

{ki} > α, (16)

being K diagonal. In general this lower bound is not restrictive and depends on the relative

magnitude of stiffness vs. gravity. As a result, by choosing the proportional control gain so

that λmin(KP ) > α, the equilibrium state q = qd, q̇ = 0 of system (1) under control (11)

is asymptotically stable.

Similar considerations hold for an inexact constant gravity compensation (ĝθ in place of

gθ(qd)). Inequality (13) still guarantees a unique equilibrium configuration q̂, different

from qd.

3. CONTROL SCHEME

An iterative compensation scheme that achieves set-point regulation in a flexible robot,

without knowledge of gravity, is introduced as follows. In particular, our objective is here

to bring the vector of robot joint variables θ at a specified value θd.

Let q0 = (θ0, δ0) be the initial arm configuration. The control law during iteration i is

defined as

u =
1

β
KP (θd − θ)−KD θ̇ + ui−1, β > 0, (17)

for i = 1, 2, . . ., where the term ui−1 is a constant feedforward. If u0 = 0, which is a

common initialization, the first iteration is performed with a simple joint PD control.

Indeed, one may collect the best available information on the required gravity term by

setting u0 = ĝθ(qd), where the ‘hat’ denotes the estimate.

System (1) under control (17) reaches at the end of the ith iteration the equilibrium state

q = qi = (θi, δi), q̇ = 0, such that

gθ(θi, δi) =
1

β
KP (θd − θi) + ui−1, (18)

gδ(θi) = −Kδi. (19)

Note that the unknown gravity term gθ(qi) is determined through the reading of the control

effort at steady state. For the next iteration, the feedforward is istantaneously updated as

ui =
1

β
KP (θd − θi) + ui−1, (20)

and control (17) is applied again starting from the current configuration qi.
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Our main result is the following:

Theorem 1. The sequence {θ0, θ1, . . .} converges to θd, starting from any initial q0,

provided that:

(a) λmin(K) > α;

(b) λmin(KP ) > α;

(c) 0 < β ≤ 1
2

α

αθ(1 +
αδ
α

)
.

Proof. Let ei = θd − θi. At the end of the ith iteration, eqs. (18) and (20) imply that

ui = gθ(qi) at the steady state qi, and so

‖ui − ui−1‖ = ‖gθ(qi)− gθ(qi−1)‖
≤ αθ‖qi − qi−1‖
≤ αθ(‖θi − θi−1‖+ ‖δi − δi−1‖)

(21)

where the first inequality (6) was used. From eq. (19), using the second inequality in (6)

and hypothesis (a), we have

‖δi − δi−1‖ ≤ ‖K−1‖ · ‖gδ(θi)− gδ(θi−1)‖

<
1

α
αδ‖θi − θi−1‖.

(22)

Combining (21) and (22),

‖ui − ui−1‖ < αθ(1 +
αδ
α

)‖θi − θi−1‖

≤ αθ(1 +
αδ
α

)(‖ei‖+ ‖ei−1‖).
(23)

On the other hand, from eq. (20)

‖ui − ui−1‖ =
1

β
‖KP ei‖. (24)

From eqs.(23) and (24), using hypothesis (b), it follows

1

β
α‖ei‖ <

1

β
λmin(KP )‖ei‖ ≤

1

β
‖KP ei‖

< αθ(1 +
αδ
α

)(‖ei‖+ ‖ei−1‖).
(25)

Reorganizing terms, since hypothesis (c) implies α− βαθ(1 + αδ
α ) > 0, we obtain

‖ei‖ <
βαθ(1 + αδ

α )

α− βαθ(1 + αδ
α )
‖ei−1‖. (26)
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Therefore, the error norm in (26) satifies a contraction mapping condition if

βαθ(1 + αδ
α )

α− βαθ(1 + αδ
α )
≤ 1, (27)

which is again guaranteed by hypothesis (c). As a result, limi→∞ ‖ei‖ = 0, and asymptotic

convergence of {θi} to θd is proved for any initial arm configuration q0.

Q.E.D.

Hypotheses (a) and (b) are the same given in (De Luca and Siciliano, 1992b) for show-

ing that the joint PD control law with constant known gravity compensation is globally

asymptotically stable. In the present case, they are needed to assure that the robot arm

under control (17) has a unique steady-state solution at every iteration. The new hypoth-

esis (c) guarantees the convergence of the iterative scheme (20), and in particular that

limi→∞ ui = gθ(qd), with a priori knowledge limited to the bounds (5) and (6) on the

gravity terms.

A series of remarks are now in order:

• The same proof can be followed in the case of rigid robot arms. In that case, αδ = 0,

αθ = α, and it follows that β ≤ 1
2 (De Luca and Panzieri, 1992c). Merging conditions (b)

and (c) into (17), the overall proportional gain matrix K̂P = KP /β has to be chosen so

to satisfy

λmin(K̂P ) > 2α. (28)

• The iterative scheme (17) and (20) is reminiscent of learning control algorithms that

achieve reproduction of repetitive trajectories for rigid (Arimoto et al., 1984a; De Luca

et al., 1992d) or flexible robot arms (Poloni and Ulivi, 1991). However, no repositioning

of the arm into the initial configuration is performed (nor required) here, at any iteration.

• The overall scheme can be interpreted as a discrete-time PID, in which the integral term

is updated only at fixed instants. Moreover, this approach combines in an automatic

way the benefits of a PD control far from the destination and of an integral action close

to the goal, avoiding wind-up effects. As a further merit of the scheme, one should

consider that gains with guaranteed convergence properties are easily selected.

• The bounds (5) and (6) on the gravity terms may be evaluated taking into account the

maximum admissible payload, so to ensure exact set-point regulation in all operating

conditions. Moreover, they can be directly obtained through experimental trials.

• As a drawback, since each update of the feedforward term should be performed at

steady-state, the control scheme converges to the desired position in double infinite
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time. However, ultimate boundedness of the error in finite time is obtained by updating

the feedforward term as soon as joint variations definitely drop below a given threshold,

even before a complete stop.

• An interesting aspect is to estimate the distance from necessity of the sufficient condi-

tions (a–c). This point can be investigated through simulations and experiments. In our

experience, the above criteria are rather stringent.

• The proposed compensation is designed to realize a desired arm configuration, specified

in terms of the joint variables θ. Sometimes it may be convenient to specify the goal

directly in terms of the end-effector pose. A possible extension of the iterative scheme

to such a situation is presented in Section 6.

4. DESIGN FOR A TWO-LINK FLEXIBLE ROBOT

The design of gains in the iterative control algorithm will be carried out for the two-link

lightweight manipulator, with a flexible forearm, available at the Robotics Laboratory of

our Department.

The robot arm is a planar mechanism constituted by two links, respectively 0.3 m and

0.7 m long, connected by revolute joints, and mounted on a fixed basement as shown in

Fig. 1. The upper link is rigid while the second link, weighting 1.8 kg, is very flexible in

the plane of motion but relatively stiff with respect to bending in the orthogonal plane

and torsion. Two d.c. motors are located at the joints in a direct-drive arrangement and

deliver an actual peak torque of 7.2 Nm and 3.8 Nm, respectively. Incremental encoders

with 20000 pulses/turn and d.c. tachometers with 12-bit D/A conversion are available for

joint position and velocity feedback. To improve damping properties of arm dynamics, an

analog velocity loop is directly closed at the power amplifier level around both joints. The

forearm deformation is measured at three different points along the link, by means of an

on-board optical transducer with 0.09◦ of angular accuracy (Lucibello and Ulivi, 1989).

The manipulator is interfaced with a 386 PC control computer, allowing to execute simple

control laws with sampling times of 5 msec.

A Lagrangian dynamic model of this flexible robot arm was derived in (De Luca et al.,

1990). A modal analysis shows that two assumed modes are sufficient to capture the

relevant flexibility of the second link, whose bending deflection w is expressed as

w(x, t) =
2∑
i=1

φi(x)δi(t) i = 1, 2. (29)
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The following data characterize the arm:

�1 = 0.3 m

�2 = 0.7 m

J1Tot = 0.447 kg m2

J2Tot = 0.303 kg m2

Jh2 = 6.35 · 10−4 kg m2

mh2 = 3.1 kg

mp = Jp = 0

φ1(�2) = −1.446 m

φ2(�2) = 1.369 m

(30)

where the subscript ‘h2’ denotes the motor at the second hub. The first two natural

frequencies of vibration are computed as:

f1 = 4.716 Hz, f2 = 14.395 Hz. (31)

The stiffness coefficients of the diagonal matrix K are

k1 = 878.02 N, k2 = 8180.56 N, (32)

while the diagonal damping matrix D has elements:

d1 = 4.14 N·sec, d2 = 5.42 N·sec. (33)

Finally, the two following coefficients related to the mode shapes appear in the model:

v1 = 0.48 kg·m, v2 = 0.18 kg·m, (34)

where

vi =

∫ �2

0

ρφi(x)dx, i = 1, 2. (35)

In order to include gravity effects in our experiments, the manipulator base has been tilted

by γ � 6◦ from the horizontal plane. The associated model term g(q) is reported below

(standard abbreviations are used for sine and cosine):

gθ =

[
g1

g2

]
, gδ =

[
g3

g4

]
, (36)

with
g1 = A1s1 + A2s12 + (A3δ1 + A4δ2)c12

g2 = A2s12 + (A3δ1 + A4δ2)c12

g3 = A3s12

g4 = A4s12.

(37)
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The constant coefficients are:

A1 = g0(m1�c1 + (m2 + mh2 + mp)�1)

A2 = g0(m2�c2 + mp�2)

A3 = g0(mpφ1(�2) + v1)

A4 = g0(mpφ2(�2) + v2),

(38)

being g0 = 9.8 sin γ the actual gravity acceleration and �ci the distance from joint i to the

center of mass of link i. With this convention, q = (θ1, θ2, δ1, δ2) = (0, 0, 0, 0) corresponds

to the straight downward position (of minimum potential energy). Note that gδ is only a

function of θ, as anticipated.

For evaluating α, the matrix (∂g/∂q) can be readily computed. With the given data, a

value α � 2.85 results, attained for q = 0. The same value is used as an upper bound for

αθ and αδ.

5. EXPERIMENTAL RESULTS

In the first experiment, a motion from q = 0 (undeformed arm) to the straight position

of maximum gravity force (π/2 of first joint clockwise rotation) is commanded, using as

proportional and derivative gains

K̂P = diag {10.7, 11.6},
KD = diag {1.6, 0.85}.

(39)

The update (20) for ui is made at fixed intervals of 5 seconds. Figures 2–5 show the joint

errors and the applied torques over 14 seconds. In this case, two updates are sufficient

for regulating the error to zero within 11 seconds. Note that both position gains in (39)

satisfy the combined sufficient condition (b) and (c). The evolution of the tip deflection

angle, as seen from the second link base, is given in Fig. 6, indicating that a maximum

deflection of ≈ 0.7 · 9 · (π/180) = 10 cm is attained during motion while the residual tip

deformation is ≈ 2 cm.

In the second experiment, θd = (−3π/4, 0) is the desired joint position to be reached from

the same initial configuration, using as gains

K̂P = diag {5.7, 6.2},
KD = diag {2.5, 1.34}.

(40)

Joint errors, input torques, and tip deflection angle over 25 seconds are displayed in Figs. 7–

11. Four updates are now necessary for obtaining convergence. No special care was taken
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for minimizing the duration of the motion: a faster global transient could have been

obtained by updating sooner the feedforward u2, then u3, and finally u4. This example

shows the capability of learning the exact gravity compensation also when the ‘wall’ of

maximum gravity force has to be overcome. Notice that intermediate steady-state torques

lie now on both sides of the final required values, indicating that the learning scheme is

also able to reduce feedforward terms when needed. In fact, the control scheme was found

to converge without problems also when resetting the desired set point back to the initial

position θ = 0, where the required compensation is zero (an equilibrium point).

As a third example, the second motion was performed halving the positional gains in (40).

In particular, K̂P = diag {2.85, 3.1} was used, which satisfies the hypothesis (b) of (De Luca

and Siciliano, 1992b), but not the additional condition (c). Figures 12–15 show 50 seconds

of motion. A persistent oscillatory behavior results as a consequence of the poor learning

capabilities: the robot arm switches alternatively from a roughly horizontal configuration,

where the maximum torque effort is stored, almost to the upward straight configuration,

where the error feedback torque counterbalances the learned feedforward term so to give

a rather small net torque. Note also that, being λmin(KP ) > α, there is still a unique

equilibrium configuration for each applied feedforward. As a result, this choice of reduced

gains gives a quantitative information on how much the sufficient conditions of our theorem

could be relaxed in general.

6. EXTENSION TO END-EFFECTOR CONTROL

The iterative compensation scheme of Section 3 achieves regulation of the joint variables

θ to a specified value θd. In robots with rigid links, the joint variables are one-to-one

related to the end-effector pose (position and orientation) through a known direct kinematic

function (Spong and Vidyasagar, 1989). In lightweight robots, link flexibility introduces a

small displacement of the arm tip position: at steady state, the actual end-effector pose will

depend also on the static deformation δd, which is associated to θd via eq. (12). However,

use of (12) would require the exact knowledge of the arm stiffness matrix K and of the

gravity term gδ(θd). Thus, it may be convenient to derive an iterative procedure that

builds up the correct gravity compensation which ensures direct regulation of the arm tip

position. In the same spirit of the previous result, this scheme should not be based on the

model but driven only by system measurements.

To this purpose, we can proceed with two separate levels: the basic algorithm (17),(20) is

still used in the lower level in order to learn the desired compensation input for a given

θ
(k)
d ; the higher level then updates θ

(k)
d to θ

(k+1)
d so to reduce the end-effector error.



14

For simplicity, we present our result for planar open-chain robots with links whose deflec-

tion is relevant only in the plane of rigid body motion (De Luca and Siciliano, 1991). This

class includes our experimental set up. In this case, the total position of the end point of

each link with respect to the previous one is simply the sum of the corresponding joint

variable and of a linear combination of the local deformation modes. In vector form, we

define

y = θ + φ̄ δ, (41)

where

φ̄ = block diag
[
φh1(�h)
�h

. . .
φhmh (�h)

�h

]
, (42)

with �h being the length of link h, φhl the lth mode shape of link h (Book, 1984), and∑n
h=1 mh = m. As a result, the specification of a desired value yd defines uniquely the

end-effector position via the usual direct kinematics.

We rewrite for convenience the closed-loop control law (17) and the low-level algorithm (20)

as

u =
1

β
KP (θ

(k)
d − θ)−KD θ̇ + u

(k)
i (42)

and

u
(k+1)
i = u

(k)
i +

1

β
KP (θ

(k)
d − θ

(k)
i ). (43)

A superscript (k) is attached to quantities updated at the kth iteration of the upper level,

while –as before– a subscript i denotes the ith iteration of the lower level. Under the

hypotheses of Theorem 1, we have

lim
i→∞

θ
(k)
i = θ

(k)
d . (44)

The objective of the upper-level update is to generate the new joint reference value θ
(k+1)
d

so that

lim
k→∞

y(k) = lim
k→∞

θ
(k)
d + φ̄ δ

(k)
d = yd, (45)

where δ
(k)
d = −K−1gδ(θ

(k)
d ) as a result of the convergence of the lower level. Let E(k) =

yd − y(k). The update is simply defined as:

θ
(k+1)
d = θ

(k)
d + E(k). (46)

Only a measure of the total link deformation is needed for implementing the update (46),

while no information on the mode shapes φ is required.

Corollary 2. Under the hypotheses of Theorem 1 and the additional condition
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(d) αδ
λmin(K) · ‖φ̄‖ < 1,

the sequence {θ(0)
d , θ

(1)
d , . . .} generated by (46), starting from any θ

(0)
d , is such that {y(k)}

converges to yd.

Proof. Taking the difference of two successive upper-level errors and using (46) yields

E(k+1)−E(k) = −φ̄(δ
(k+1)
d − δ

(k)
d )− (θ

(k+1)
d − θ

(k)
d ) = φ̄K−1

[
gδ(θ

(k+1)
d )− gδ(θ

(k)
d )
]
−E(k),

(47)

from which

‖E(k+1)‖ =
∥∥∥φ̄K−1

[
gδ(θ

(k)
d + E(k))− gδ(θ

(k)
d )
]∥∥∥

≤ ‖φ̄K−1‖ · αδ · ‖E(k)‖ ≤ αδ
λmin(K)

· ‖φ̄‖ · ‖E(k)‖,
(48)

where the second inequality (6) was used. Hypothesis (d) implies a contraction condition

for the error sequence {E(k)} and thus (45) holds true.

We conclude with two remarks:

• Under hypothesis (a), αδ/λmin(K) < αδ/α < 1 and assumption (d) may be replaced

by a simpler bound. However, the use of α may lead to a very conservative sufficient

condition. Instead, it is convenient to keep an explicit track of K and φ̄ together because

the elastic properties of the robot links affect consistently both terms. In particular, the

larger is the amplitude of the mode shapes φ̄ (at the numerator of (d)), the larger will

be the stiffness constants ki in K (at the denominator).

• We can check the above sufficient condition on the data of the two-link flexible arm

available at DIS (see eqs.(29)-(32)). Since αδ < α � 2.85, we have

αδ
λmin(K)

· ‖φ̄‖ < 2.85

878
· 1

0.7
·
√

1.4462 + 1.3692 � 0.01� 1. (49)

We argue that this condition is satisfied also in more general.

7. CONCLUSIONS

A simple iterative control scheme has been presented for set-point regulation of robots with

flexible links under gravity, without knowledge of the robot dynamic model. The scheme

generates exact gravity compensation at the desired set point, starting initially with a

joint PD control law and updating at discrete instants an additional feedforward term. A

lower bound condition on the magnitude of the proportional gain in the PD control part
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is sufficient to prove global convergence of the scheme. Experimental results have shown

the effectiveness of the approach, pointing out that the convergence condition is also close

to be necessary.

The approach was implemented for the regulation of a desired joint configuration of the

arm; in this respect, link deformation variables are not needed neither for feedback nor

for the feedforward update. If the tip location is of interest, a similar two-level learning

scheme has been set up, still closing the feedback loop at the joint level but taking into

account the value of link deformation at intermediate steady states for updating the joint

reference value.
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Figure Captions

Fig. 1 — The two-link flexible robot arm at DIS

Fig. 2 — Position error for joint 1 (θd = (−π/2, 0))

Fig. 3 — Position error for joint 2 (θd = (−π/2, 0))

Fig. 4 — Applied torque for joint 1 (θd = (−π/2, 0))

Fig. 5 — Applied torque for joint 2 (θd = (−π/2, 0))

Fig. 6 — Tip deflection angle (θd = (−π/2, 0))
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Fig. 7 — Position error for joint 1 (θd = (−3π/4, 0))

Fig. 8 — Position error for joint 2 (θd = (−3π/4, 0))

Fig. 9 — Applied torque for joint 1 (θd = (−3π/4, 0))

Fig. 10 — Applied torque for joint 2 (θd = (−3π/4, 0))

Fig. 11 — Tip deflection angle (θd = (−3π/4, 0))

Fig. 12 — Position error for joint 1 with reduced gains (θd = (−3π/4, 0))

Fig. 13 — Position error for joint 2 with reduced gains (θd = (−3π/4, 0))

Fig. 14 — Applied torque for joint 1 with reduced gains (θd = (−3π/4, 0))

Fig. 15 — Applied torque for joint 2 with reduced gains (θd = (−3π/4, 0))
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